On the Structure of Industrial SAT Instances

نویسندگان

  • Carlos Ansótegui
  • Maria Luisa Bonet
  • Jordi Levy
چکیده

During this decade, it has been observed that many realworld graphs, like the web and some social and metabolic networks, have a scale-free structure. These graphs are characterized by a big variability in the arity of nodes, that seems to follow a power-law distribution. This came as a big surprise to researchers steeped in the tradition of classical random networks. SAT instances can also be seen as (bi-partite) graphs. In this paper we study many families of industrial SAT instances used in SAT competitions, and show that most of them also present this scale-free structure. On the contrary, random SAT instances, viewed as graphs, are closer to the classical random graph model, where arity of nodes follows a Poisson distribution with small variability. This would explain their distinct nature. We also analyze what happens when we instantiate a fraction of the variables, at random or using some heuristics, and how the scale-free structure is modified by these instantiations. Finally, we study how the structure is modified during the execution of a SAT solver, concluding that the scale-free structure is preserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Community Structure in Industrial SAT Instances

Modern SAT solvers have experienced a remarkable progress on solving industrial instances. Most of the techniques have been developed after an intensive experimental process. It is believed that these techniques exploit the underlying structure of industrial instances. However, there are few works trying to exactly characterize the main features of this structure. The research community on comp...

متن کامل

Structure features for SAT instances classification

The success of portfolio approaches in SAT solving relies on the observation that different SAT solvers may dramatically change their performance depending on the class of SAT instances they are trying to solve. In these approaches, a set of features of the problem is used to build a prediction model, which classifies instances into classes, and computes the fastest algorithm to solve each of t...

متن کامل

On the Classification of Industrial SAT Families

The success of portfolio approaches in SAT solving relies on the observation that different SAT solving techniques perform better on different SAT instances. The Algorithm Selection Problem faces the problem of choosing, using a prediction model, the best algorithm from a predefined set, to solve a particular instance of a problem. Using Machine Learning techniques, this prediction is performed...

متن کامل

A Modularity-Based Random SAT Instances Generator

Nowadays, many industrial SAT instances can be solved efficiently by modern SAT solvers. However, the number of real-world instances is finite. Therefore, the process of development and test of SAT solving techniques can benefit of new models of random formulas that capture more realistically the features of real-world problems. In many works, the structure of industrial instances has been anal...

متن کامل

Generating SAT instances with community structure

Nowadays, modern SAT solvers are able to efficiently solve many industrial, or real-world, SAT instances. However, the process of development and testing of new SAT solving techniques is conditioned to the finite and reduced number of known industrial benchmarks. Therefore, new models of random SAT instances generation that capture realistically the features of real-world problems can be benefi...

متن کامل

On the Modularity of Industrial SAT Instances

Learning, re-starting and other techniques of modern SAT solvers have been shown efficient when solving SAT instances from industrial application. The ability to exploit the structure of these instances has been proposed as the responsible of such success. Here we study the modularity of some of these instances, used in the latest SAT competitions. Using a simple label propagation algorithm we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009